Learning Problem-Oriented Decision Structures from Decision Rules: The AQDT-2 System
نویسندگان
چکیده
A decision structure is an acyclic graph that specifies an order of tests to be applied to an object (or a situation) to arrive at a decision about that object. and serves as a simple and powerful tool for organizing a decision process. This paper proposes a methodology for learning decision structures that are oriented toward specific decision making situations. The methodology consists of two phases: 1—determining and storing declarative rules describing the decision process, 2—deriving on-line a decision structure from the rules. The first step is performed by an expert or by an AQbased inductive learning program that learns decision rules from examples of decisions (AQ15 or AQ17). The second step transforms the decision rules to a decision structure that is most suitable for the given decision making situation. The system, AQDT-2, implementing the second step, has been applied to a problem in construction engineering. In the experiments, AQDT-2 outperformed all other programs applied to the same problem in terms of the accuracy and the simplicity of the generated decision structures.
منابع مشابه
Learning Problem-Oriented Decision Structures from Decision Rule: The AQDT-2 System
A decision structure is an acyclic graph that specifies an order of tests to be applied to an object (or a situation) to arrive at a decision about that object. and serves as a simple and powerful tool for organizing a decision process. This paper proposes a methodology for learning decision structures that are oriented toward specific decision making situations. The methodology consists of two...
متن کاملConverting Declarative Rules into Decision Trees
Most of the methods that generate decision trees for a specific problem use examples of data instances in the decision tree generation process. This paper proposes a method called “RBDT-1”rule based decision tree -for learning a decision tree from a set of decision rules that cover the data instances rather than from the data instances themselves. RBDT-1 method uses a set of declarative rules a...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملPhilosophical foundations for a learning-oriented knowledge management system for decision support
Traditional organizational and support structures no longer function efficiently in the face of increasingly complex problem domains because these structures are generally not conceived from the social perspective, requiring development of new organizational structures and support systems. These structures must be able to support traditional decision-making in an increasingly complicated social...
متن کاملA New Approach for Knowledge Based Systems Reduction using Rough Sets Theory (RESEARCH NOTE)
Problem of knowledge analysis for decision support system is the most difficult task of information systems. This paper presents a new approach based on notions of mathematical theory of Rough Sets to solve this problem. Using these concepts a systematic approach has been developed to reduce the size of decision database and extract reduced rules set from vague and uncertain data. The method ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994